equivalence of k-functionals and modulus of smoothness for fourier transform
Authors
abstract
in hilbert space l2(rn), we prove the equivalence between the mod-ulus of smoothness and the k-functionals constructed by the sobolev space cor-responding to the fourier transform. for this purpose, using a spherical meanoperator.
similar resources
Equivalence of K-functionals and modulus of smoothness for fourier transform
In Hilbert space L2(Rn), we prove the equivalence between the mod-ulus of smoothness and the K-functionals constructed by the Sobolev space cor-responding to the Fourier transform. For this purpose, Using a spherical meanoperator.
full textthe innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran
آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...
15 صفحه اولOn stability of reconstruction from Fourier transform modulus
We describe a new method of frequency-domain decon-volution when the kernel has no spectral inverse. Discrete frequencyinterpolation is used to avoid zero-valued frequency samples. The al-gorithm does not suffer from the spectral singularities of the originalkernel, its complexity is proportional to the fast Fourier transform,and a comparative noise study showed improved per...
full textSignal Reconstruction From The Modulus of its Fourier Transform
The problem of signal reconstruction from the magnitude of its Fourier transform arises in many applications where the wave phase is apparently lost or impractical to measure. One example of such an application that has attracted a substantial number of researchers in recent years is Coherent Diffraction Imaging (CDI). CDI is a “lens-less” technique for 2D and 3D nano-objects reconstruction wit...
full textGENERALIZATION OF TITCHMARSH'S THEOREM FOR THE GENERALIZED FOURIER-BESSEL TRANSFORM
In this paper, using a generalized translation operator, we prove theestimates for the generalized Fourier-Bessel transform in the space L2 on certainclasses of functions.
full textMy Resources
Save resource for easier access later
Journal title:
international journal of nonlinear analysis and applicationsPublisher: semnan university
ISSN
volume 3
issue 2 2012
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023